H=-16t^2+127t+50

Simple and best practice solution for H=-16t^2+127t+50 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+127t+50 equation:



=-16H^2+127H+50
We move all terms to the left:
-(-16H^2+127H+50)=0
We get rid of parentheses
16H^2-127H-50=0
a = 16; b = -127; c = -50;
Δ = b2-4ac
Δ = -1272-4·16·(-50)
Δ = 19329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-127)-\sqrt{19329}}{2*16}=\frac{127-\sqrt{19329}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-127)+\sqrt{19329}}{2*16}=\frac{127+\sqrt{19329}}{32} $

See similar equations:

| -15x^2+37=0 | | –1+7v=–9+6v | | 3(4x+8)=93x | | x-29=56 | | b^{2}=0.25 | | 4b+7=−1;2 | | 38=6z+2z | | x^2(x+4)=46656 | | y+30+65=180 | | (5x–8)(x+4)=0 | | x+15+10;x=5 | | -4(f+3)+5=-43 | | (9v-4)/3=(9v+4)/4+10 | | 73+54+5x-7=180 | | 7/5r+2=16 | | 12/5r+2=16 | | 73+54(5x-7)=180 | | 30(x+70)=180 | | 5x-3(2×+7)=2×+9 | | 28x=90-72 | | 26=y-9y=35 | | 26=y-9y=25 | | 85=5yy= | | ÷x-16=29 | | (3x+9)+129=180 | | 129-(3x+9)=180 | | (3x+9)129=180 | | 2d-7=15;d=4 | | 4(x-1)=2+3x | | 7.7=2.1-7x | | 12x-3+6x=8x+4 | | 34x-40=6x+40 |

Equations solver categories